
# Hand-Arm Vibration Syndrome

Hand-Arm Vibration Syndrome (HAVS) is the medical term for damage that may occur to the fingers, hands and arms as a result of working with vibrating tools or machinery. Vibration injuries are divided into three subgroups:

- 1. Neurological injuries
- 2. Vascular injuries
- 3. Musculoskeletal injuries

#### **Impact:**

- Unable to hold a mobile phone or a pint
- Unable to do intricate work eg tie a shoelace, undo small buttons
- Sleepless nights

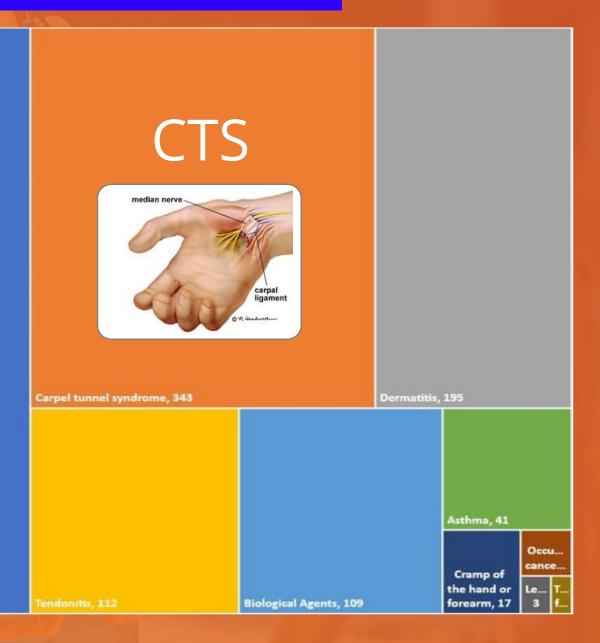


#### HOW LIKELY ARE YOU TO DEVELOP HAVS?

10% of employees exposed at the exposure action level will contract HAVS within 12 years or within 6 years if exposed to the exposure limit level. (HSE)

"Exposure below the Action Value cannot be considered safe..." (HSE)




| D <sub>y</sub> , years | 4   | 8   | 12  | 15  |
|------------------------|-----|-----|-----|-----|
| A(8), m/s <sup>2</sup> | 7   | 3.7 | 2.5 | 2.0 |
| Daily Exposure Pts     | 784 | 219 | 100 | 64  |

Established correlation between time to vascular damage (white finger) and average daily exposure

#### INDUSTRIAL DISEASE RIDDORS\*

# **HAVS**





Hand Arm Vibration Syndrome, 805

#### LEGAL OBLIGATIONS

The Control of Vibration at Work Regulations 2005 and associated guidance requires the following;

- Elimination or control of vibration exposure risk to As Low As Reasonably Practicable (ALARP).
- An assessment of the risks to employees from exposure to vibration, including assessment of employees' daily exposure to vibration.
- Information, instruction and training to tool users and their managers.

A suitable and sufficient assessment of HAV exposure risk requires a determination of;

- duration of exposure and;
- probable vibrationmagnitude during exposure.

# Meeting HSE Legidlation

#### The HSE exposure point system to quantify risk

To estimate HAV exposure risk – time of exposure and the representative vibration magnitude of each tool used cumulated across all tools each day.

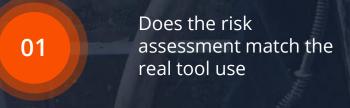


**100 points** (8 hrs of a tool with  $2.5 \text{ m/s}^2$ )



Take action to reduce exposure.

1 in 10 develop HAVS in 12 years at this level.


**400 points** (8 hrs of a tool with 5 m/s $^2$ )



Do not work above this level.

1 in 10 develop HAVS in 6 years at this level.

| _                | 40  | 800  |      | _    |                     |           |            |      |      |      |      |
|------------------|-----|------|------|------|---------------------|-----------|------------|------|------|------|------|
|                  | 30  | 450  | 900  |      |                     |           |            |      |      |      |      |
|                  | 25  | 315  | 625  | 1250 |                     |           |            |      |      |      |      |
|                  | 20  | 200  | 400  | 800  |                     |           |            |      |      |      |      |
|                  | 19  | 180  | 360  | 720  | 1450                |           |            |      |      |      |      |
|                  | 18  | 160  | 325  | 650  | 1300                |           |            |      |      |      |      |
| _                | 17  | 145  | 290  | 580  | 1150                |           |            |      |      |      |      |
| _                | 16  | 130  | 255  | 510  | 1000                |           |            |      |      |      |      |
| _                | 15  | 115  | 225  | 450  | 900                 | 1350      |            |      |      |      |      |
|                  | 14  | 98   | 195  | 390  | 785                 | 1200      |            |      |      |      |      |
|                  | 13  | 85   | 170  | 340  | 675                 | 1000      | 1350       |      |      |      |      |
| Vibration =      | 12  | 72   | 145  | 290  | 575                 | 865       | 1150       | 1450 |      |      |      |
|                  | 11  | 61   | 120  | 240  | 485                 | 725       | 970        | 1200 | 1450 |      |      |
|                  | 10  | 50   | 100  | 200  | 400                 | 600       | 800        | 1000 | 1200 |      |      |
| m/s <sup>2</sup> | 9   | 41   | 81   | 160  | 325                 | 485       | 650        | 810  | 970  | 1300 |      |
|                  | 8   | 32   | 64   | 130  | 255                 | 385       | 510        | 640  | 770  | 1000 | 1200 |
|                  | 7   | 25   | 49   | 98   | 195                 | 295       | 390        | 490  | 590  | 785  | 865  |
|                  | 6   | 18   | 36   | 72   | 145                 | 215       | 290        | 360  | 430  | 575  | 720  |
| _                | 5.5 | 15   | 30   | 61   | 120                 | 180       | 240        | 305  | 365  | 485  | 605  |
|                  | 5)- | 13   | 25   | - 60 | - 40 <del>0</del> - | ▶ (150)   | 200        | 250  | 300  | 400  | 500  |
|                  | 4.5 | 10   | 20   | 41   | 81                  | 1/10      | 160        | 205  | 245  | 325  | 405  |
| _                | 4   | 8    | 16   | 32   | 64                  | 96        | 130        | 160  | 190  | 255  | 320  |
|                  | 3.5 | 6    | 12   | 25   | 49                  | 74        | 98         | 125  | 145  | 195  | 245  |
| -                | 3   | 5    | 9    | 18   | 36                  | 54        | 72         | 90   | 110  | 145  | 180  |
|                  | 2.5 | 3    | 6    | 13   | 25                  | 38        | 50         | 63   | 75   | 100  | 125  |
|                  | 2   | 2    | 4    | 8    | 16                  | 24        | 32         | 40   | 48   | 64   | 80   |
|                  | 1.5 | 1    | 2    | 5    | 9                   | 14        | 18         | 23   | 27   | 36   | 45   |
|                  | 1   | 1    | 1    | 2    | 4                   | Ş.        | 8          | 10   | 12   | 16   | 20   |
|                  |     | 15 m | 30 m | 1 h  | 2 h                 | 3 h       | 4 h        | 5 h  | 6 h  | 8 h  | 10 h |
|                  |     |      |      |      |                     | Daily exp | osure time | )    |      |      |      |

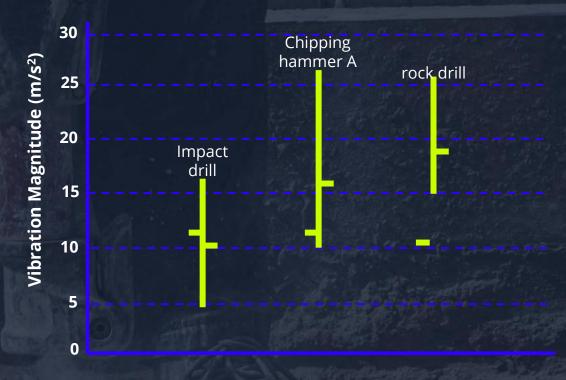


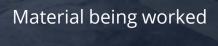
How representative is vibration data used for risk assessments

Inadequate or ineffective controls.

Operator competency

04


05


Is the right tool being used for the job

# Why does HAVS still dominate RIDDORS?



04

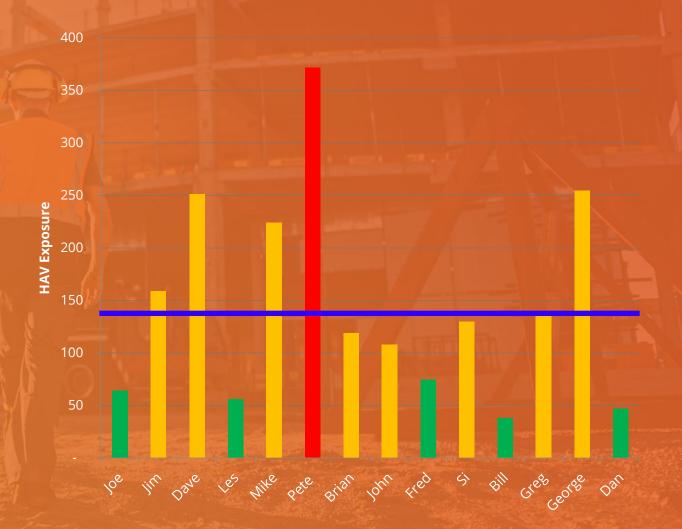








#### **HOW GOOD ARE YOUR RISK ASSESSMENTS?**


# What is the risk to the individual?

A company requested a case study to understand the effectiveness of a generic risk assessment of HAV exposure risks.

A number of 2 man and 3 man teams were tasked with digging same sized hole in the same type of road with the same tool type

The task based assessment from the typical excavation time and average vibration concluded that for a 2 man team the exposure should be no greater than 140

Chart displays the max exposure risk experienced for each individual when digging one hole while sharing the work\*.



# HAVWEAR 2 Concurrent Assessments





Pre-determined expected vibration magnitude



Trigger time of Tool Use

Tool Exposure Points (TEP)

COMPLIANT with HSE Guidance



Real use sensed vibration magnitude



Trigger time of Tool Use

Sensed Exposure Points (SEP)

Independently validated by the IOM

### HAVWEAR

4<sup>th</sup>alert 20 sec

3<sup>rd</sup> alert *10 sec* 

2<sup>nd</sup> alert 5 sec

1<sup>st</sup> alert 2 sec

Alerts
Beeps & vibrates

ELV exceeded

EAV exceeded

Split into 3
equal parts
to display
incremental
increases in
exposure.

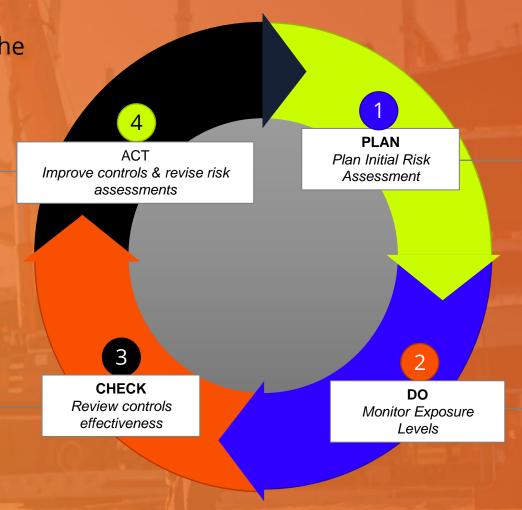
**Below EAV** 

Colour bar displays exposure action values



#### RISK ASSESSMENT SHOULD BE A CONTINUOUS PROCESS

#### PLAN, DO, CHECK, ACT


Management method for the control & continuous improvement of risk

Review the performance of controls and identify improvements to reduce risk ALARP.

HAVWEAR sensed data can identify unexpected risk in the management of HAV exposure

Real use vibration magnitude insight

- Tool and accessory performance issues
- Operator competency



Initial risk assessments of employees exposed to vibration are required to establish an appropriate set of controls and determine if occupational health screening is required.

Monitoring can help validate risk assessments.

Tool mounted and wearable on the wrist devices can be used to monitor HAV exposure.

#### APPROXIMATELY RIGHT OR EXACTLY WRONG

#### Assessment / Monitoring

#### Measurement

Can be suitable for monitoring HAV exposure all day from multiple tool use and assess exposure as required by "The Control of Vibrations at Work Regulations 2005".



A wrist or tool mounted HAV monitor\* does not measure in full **compliance to ISO5349**.



A grip mounted vibration magnitude measurement which can be compliant to ISO5349...



... will not be suitable for monitoring HAV exposure all day from multiple tool use.









# Connected Worker Technology

Connecting tasks, workers and risk monitoring to improve H&S processes and employee behaviour

HOISE PROXIMITL DUST VIBRATION. PANIC **REACTEC ANALYTICS** PERIMETER

A system that can grow with you Add third party monitoring systems

Lone worker support

A single system incorporating powerful analytics to manage aggregated risk data from a suite of personal monitors

# Universal & Flexible Ecosystem

# Turning personal risk data into actionable intelligence

Monitor and assess health and safety risks by aggregating data from multiple monitoring systems into one ecosystem.

Work more efficiently and make better decisions with a single interface to manage multiple risks



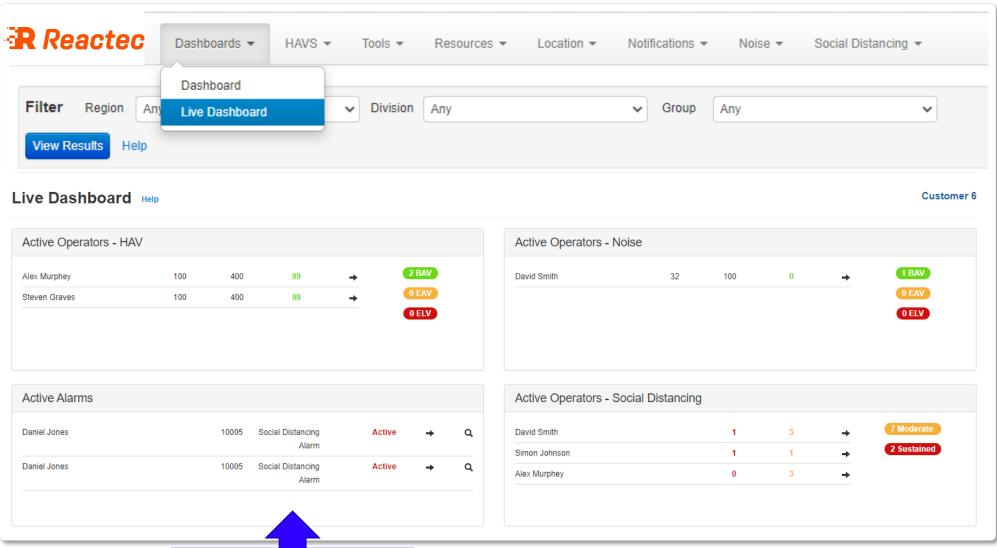
**Intuitive analytics** - More easily monitor and revise your measure of controls with a rich data set transformed into informative analytics



**Flexible and powerful** – Manage multiple risks at a corporate and individual level

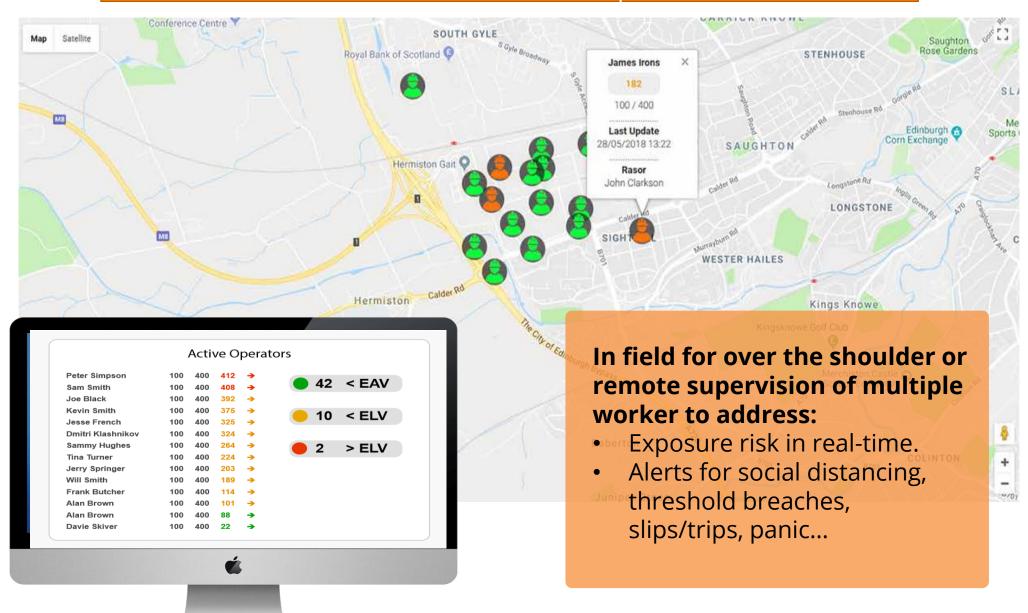


**Real-time risk management** – Reduce risk and protect employees with onsite and remote management solutions




**Corporate control of devices and data** - On demand daily allocation of monitors removing reliance on employee ownership (includes the world leading Reactec HAVwear watch (HAVS risk))




**Future proof -** Third party integration means you can add your existing or preferred systems into the Reactec Ecosystem\*

## Live Analytics Data

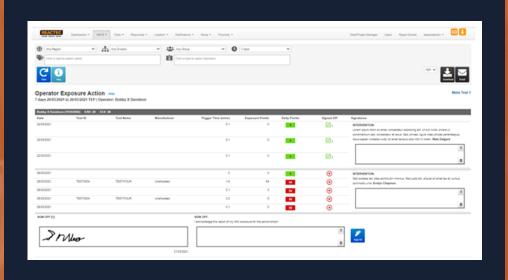


Monitor the situation of live alerts and alarms

### Onsite & Remote Supervision



#### EVIDENCE YOUR PREVENTION ENGINEERING


#### Record & Monitor Control Measure Success

Log applied control measures and track their effectiveness in reducing risk by the impact on workforce average daily HAV exposure.



# Log & Authenticate Interventions

Log intervention notes allocated to individual employees and electronically sign to acknowledge.



### THE REACTEC PREVENTION ENGINEERING APPROACH - WHY

| Regulations & the HSE                                            | Civil litigation                                            | Employee care                                                   |  |  |
|------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|--|--|
| Prioritise and verify the effectiveness of your controls         | Robust and credible evidence to assist in defence of claims | Real life assessments of individual HAV exposure                |  |  |
| Enhanced real-time HAV exposure risk assessments.                | reconce delence breparation costs                           |                                                                 |  |  |
| Design, prioritise and record controls based on data analytics.  | Auditable and tamper proof                                  | Ensure individuals are not at increased risk of developing HAVS |  |  |
| Evidence of control Effectiveness GDPR compliant data management |                                                             | Consolidate employee H&S monitored data                         |  |  |

# End Thank you